

STM32 Nucleo-64 ボード NUCLEO-WL55JC のプレゼン テーションへようこそ。

ここでは、STM32WL シリーズ専用のこの Nucleo ボードの主 な機能について説明します。この Nucleo ボードに付属するデ モンストレーション・ソフトウェアを使用すると、この新しい低消 費電力無線通信マイクロコントローラを深く理解できます。

STM32WB55 Nucleo ボードには、すぐに使い始めて容易に アプリケーションを開発するために必要なすべてが揃っていま す。

- このパッケージは STM32WL55 マイクロコントローラを搭載した 2 枚のボードで構成され、幅広い無線アプリケーション開発に対応しています。
- ボード NUCLEO-WL55JC1 は 865 ~ 928 MHz の高周波帯 専用です。
- ボード NUCLEO-WL55JC2 は 433 ~ 510 MHz の低周波帯 専用です。
- 包括的な STM32 ソフトウェアである HAL ライブラリとさまざま なパッケージ・ソフトウェア・サンプルが付属しています。
- また、既存のサンプルからユーザ固有のアプリケーションを開発するうえで有用なデバッガが内蔵されています。

STM32WL55 Nucleo ボードの外観です。電源とUSB ペリ フェラル 1 つを接続するためのさまざまなコネクタがあります。 複数のユーザ・スイッチと LED も用意されています。 Arduino 接続をサポートしているので、多彩な専用アドオン ボードを使用することで限りない拡張性が得られます。 ST Morpho コネクタを通じて STM32WL55 マイクロコントロー ラのすべてのピンを使用することもできます。 既存のサンプルを基にして固有のアプリケーションを開発し、 テストするうえで有用な ST-LINK V3 デバッガも STM32WL55 Nucleo ボードに組み込まれています。 STM32WL55 Nucleo ボードには多数の電源オプションが用 意されており、ST-LINK USB コネクタ経由や外部ソースから 電源を供給できます。

入力電源	コネクタ・ピン	電圧範囲	ジャンパ
/_USB_STLK	CN1 ピン 1	4.75 ~ 5.25 V	JP5 [1-2] オン
VIN	CN6 ピン 8 CN7 ピン 24	7 ~ 12 V	JP5 [3-4] オン
	CN7ピン6	4.75 ~ 5.25 V	JP5 [5-6] オン
JSB_CHG	CN1 ピン 1	4.75 ~ 5.25 V	JP5 [7-8] オン
D_ALONE_5V	CN11 ピン 1	4.75 ~ 5.25 V	JP5 [9-10] オン ST LINK-V3 に電源 を供給していない場 合に使用
	CN6 ピン 4 CN7 ピン 16 JP1 ピン 1	3 V ~ 3.6 V	ST LINK-V3 を使用 していない状態で、 STM32MCU に直接 電源を供給する場合 に使用

STM32WL55 Nucleo ボードでは6種類の電源を使用できます。

- ST LINK-V3 コネクタに接続した USB ケーブルを通じてホスト・コン ピュータから5Vを供給できます。JP5 [1-2] にジャンパを接続する必要 があります。
- CN6 ピン8とCN7 ピン24に7~12Vの電源を接続できます。JP5 [3-4]にジャンパを接続する必要があります。
- CN7 ピン6に外部5V電源を接続できます。JP5 [5-6] にジャンパを接続する必要があります。
- USB チャージャから5Vを供給できます。JP5 [7-8] にジャンパを接続 する必要があります。
- CN11 ピン1にスタンドアロンの5V電源を接続できます。JP5 [9-10]
 にジャンパを接続する必要があります。ST LINK-V3 に電源を供給していない場合に使用します。
- ST LINK-V3 に電源を供給していない場合に 3.3 V 電源を使用できます。
 この場合、STM32WL55 マイクロコントローラは直接 3.3 V の電源供給
 を受けます。

スライドに、1 番目の選択肢とジャンパ 5 [1-2] の位置を示します。ST LINK-V3 に接続したホスト・コンピュータから USB コネクタ経由でマイクロ コントローラ・ボードに電源を供給しています。これはデフォルトの設定です。

デフォルトのボード設定

ジャンパ	定義	デフォルトの設定	コメント
JP1	I_SoC	オン	STM32WL 電流測定用
JP2	I_RF	オフ(SB28 オン)	STM32WL 電流測定用(無線部分)
JP3	BOOT0	オン	PH3/BOOT0 のプルダウン抵抗を切り離し、オプショ ン・バイトの設定によってソフトウェアによる BOOT0 を 使用する場合に BOOT0 を I/O として使用可能
JP4	5V電源選択	JP5 [1-2] (デフォ ルト)	5V_USB_STLK (ST-LINK 経由)
JP5	I_SYS	オフ(SB27 オン)	STM32WL 電流測定用(デジタル部分)
JP6	STLK-RST	オフ	STLINK-V3E リセット
JP7	5V_PWR	オン	5V 電源
JP8	STLINK-V3E とマイクロコン トローラのターゲット間の信号	6 つのジャンパを すべてオン	STM32WL55 マイクロコントローラに接続されている ST LINK-V3
JP9	I_APP	オフ(SB32オン)	U3 とU4 の DC スイッチ電流測定用
Life.augmented			·

このスライドでは、STM32WL55 Nucleo ボードのデフォルト設定について説明します。

5 V はデフォルトの電源であり、ホスト・コンピュータから USB ケーブル経由で供給します。

ST-Link のリセット入力はデフォルトで切り離されています (JP6 がオフ)。ST Link-V3 は、自律的なパワーアップ・リセット 回路を実装しています。

JP1 ジャンパは、I_SoC とラベル表記されています。このジャンパを外して電流計を接続すると、STM32 マイクロコントローラの消費電流を測定できます。

このジャンパはデフォルトで接続されているので、STM32 マイ クロコントローラに電源が供給されます。

また、無線部分、デジタル部分、DC スイッチの消費電力測定 に使用できるジャンパが用意されています(それぞれ JP2、 JP5、JP9)。これらのジャンパは接続されていませんが、無線 部分、デジタル部分、DC スイッチに電源を供給するために、 ジャンパと並列に専用 SB が配置されています。

Fully open cores and multiprotocol: LGRAWAR, Sigtor, W-MBUS, proprietary protocols and normalization of the second se	More inside		STM32WI-55	ATTT
View View SUFFICIAL FOLS • MIXESCRAMMARING • STMS2CLANDAMIC •	Fully open cores an	td multiprotocol: LoRaWAN, Sigfox, W-MBUS, proprietary protocols and more.	Wireless, Long-Rang	C Itte. dugmented
SOFTWARE TOOLS STM32CubeMondor STM32Cu	LoRa	LoRaWAN Y sigfox M-Bus	Ultra-low-power Sub-GHz MCU	
STM32CubeProg CubeProgrammer STM32CubeProg STM32WL55JQI7 73 PINS Am® Cortex® M4 / MO+ core at d3/48 Mit 256 Kityste of Rash memory, d4 Alysis of SRM Ultra-low-power MCU, Sub-Gitz multi-modulation rait (LRA®), Ultra-low-power MCU, Sub-Gitz unti-modulation rait (LRA®), Ultra-low-power MCU, Sub-G	SOFTWARE TOOL: • STMS2CubeMX • STMS2CubeMonitor	S STM32 CubeMX STM32		
By using or excluding (see speciately here evolutions (style) accessible here evolutions (style) accessible here evolutions (style) multi-modulation ratios (stellar", (CPC, GAMS, accessible) evolutions (style) multi-modulation ratios (stellar", (CPC, GAMS, accessible) evolutions (style) multi-modulation ratios (stellar", (CPC, GAMS, accessible) evolutions (style) multi-modulation ratios (stellar", evolutions (style) multi-modulation ratios (Stellar)				
Two exclansion types		r	STM32WL55JCI7 73 PINS • Arm [®] CotraC [®] -M4 / MG+ core at 4348 MHz • 256 Koytes of Flash memory, 64 Khytes of SRAM • Ultra-tow-power MCU, Sub-GHz • Ultra-tow-power MCU, Sub-GHz	-WL55JC1
anneas is all CTMOD I/Da	By using or installing (evaluation init you sco EVALUATION LIZENCE at: www.st.com/epi	ys spoliotoj (ha patal be sumo of he ACREEMENT avalibble a	STM32WL55JCI7 73 PINS • Arm® Cotrex®: A4 / MCH - core at 46/48 MHz • 256 Kbytes of Flash memory, 64 Kbytes of SRMM • Ultra-in-objecter MCU, Sub-GHz multi-modulation radio: LoBa®; (OPEK, (oMSK, and BPSK • RF optimized from 865 MHz to 930 MHz hand • High P performance	

これは STM32WL55 Nucleo ボードのインサートカードの表面 と裏面です。

これは STM32WL55 Nucleo ボードのインサートカードの表と 裏です。

Nucleo ボードはそれぞれ STM32WB55 マイクロコントローラを 1 基搭載しています。 このデバイス(UFBGA73 パッケージ)は、48 MHz で動作する ARM® Cortex®-M0+ コアと ARM® Cortex®-M4 コアを 1 つずつ、256 KB の Flash メモリ、64 KB の RAM を備えています。その強力な超低消費電力無線モジュールには、LoRa®、 (G)FSK、(G)MSK、および BPSK の各変調方式をサポートする RF トランシーバ (周波数範囲: 150 MHz ~ 960 MHz)が組み込まれています。

Nucleo ボードは、次に示すペリフェラルも備えています。

- ユーザ LED x 3、ユーザ・ボタン x 3、リセット・プッシュボタン x 1
- 32.768 kHz の LSE クリスタルオシレータと 32 MHz の HSE オンボードオシ レータ

Nucleo ボードは、次に示すさまざまなコネクタも備えています。

- ボードに電源を供給する USB (Micro-B)
- ・ デバッグ用の MIPI® デバッグコネクタ
- ARDUINO® Uno V3 拡張コネクタ。Arduino 仕様互換の多数の拡張ボードを STM32WL55 Nucleo ボードに接続できます。
- STM32 のすべての I/O へのアクセスを提供する Morpho コネクタ

ボード上の拡張コネクタから、STM32のすべての I/O にアクセスできます。

高周波帯(865~928 MHz)専用ボード NUCLEO-WL55JC1 用と して、専用のハイバンド SMA アンテナが付属しています。 低周波帯(433~510 MHz)専用ボード NUCLEO-WL55JC2 用と して、専用のローバンド SMA アンテナが付属しています。

Nucleo ボードには、ST-LINK、USB VBUS、外部電源を使用できる 柔軟な電源オプションが用意されています。

また、USB の再エニュメレーション機能を備えたオンボード STLINK-V3 デバッガ/プログラマも搭載され、マスストレージ、仮想 COM ポート、デバッグポートが用意されています。

ボードには、無償の包括的なソフトウェア・ライブラリとソフトウェア・ サンプルが付属し、STM32 Cube MCU パッケージで使用できます。 IDE として、IAR、Keil、GCC ベースの IDE、ARM MBED をサポー トしています。

 STM32WL55 びデモンストレ ファイルで提び .zip ファイルな フォルダが生 	ファー・ 5 Nucleo のサンプル、アプリケーション、およ ノーションのファームウェアを単一の .zip 供 を展開すると、STM32Cube_FW_WL_VX.Y.Z 成され、そこに次のサブフォルダが置かれる	ムウェア・パッケージ STM32Cube_FW_WL_V1.0.0 htmresc Documentation Drivers Middlewares Projects NUCLEO-WL55JC
ディレクトリ	コンテンツ	Applications Demonstrations
アプリケーション	すぐに実行できるアプリケーション群	デモンストレーション
デモンストレーショ ン	すぐに実行できるデモンストレーションのファームウェア	LocalNetwork_Concentrator LocalNetwork_Sensor
サンプルプロジェク ト	すぐに実行できるペリフェラルごとのツールチェーン・プロジェクト	> Examples サンプル ゴロジェクト > Examples_LL
テンプレートプロジ ェクト	カスタマイズできる空の main 関数を設定したプロジェクト	Examples_MIX Fremplates
STM3 • STM3 • STM3 • STM3	アエア・ツール STM32 2CubeMX 2CubeMonitor 2CubeProg STM32 CubeMonitor STM32 CubeProgrammer	テンプレート > DualCore プロジェクト > SingleCore > Templates_LL > Utilities 10

Nucleo プロジェクトのサンプルを収めたファイルを展開すると、 STM32Cuve_FW_WL_VX.Y.Z ディレクトリが生成されます。 このディレクトリには、NUCLEO-WL55JCx ボードで実行でき るさまざまなプロジェクトが置かれています。これらのプロジェ クトはすぐに実行できます。

アプリケーションのサブフォルダには、一連のアプリケーションが置かれています。

デモンストレーションのサブフォルダには、デモンストレーション のファームウェアがあります。

サンプルプロジェクトのサブフォルダには、ペリフェラルごとの ツールチェーン・プロジェクトがあります。

テンプレートプロジェクトのサブフォルダには、main 関数を空にして設定されたプロジェクトがあります。

www.st.com/en/evaluation-tools/nucleo-wl55jc.html で入手可能	はじめに
 ボードのジャンパのうち、JP4(電源ソース)が STLK 側、JP1(I_S べてのジャンパ)がオンであることを確認する 	oC)がオン、JP3(Boot0)がオン、JP7(5V_PWR)がオン、JP8(6 本のす
 STM32WL Nucleo ボードの USB コネクタ CN1 と PC を標準 US LED5 (PWR)とLED6 (COM) が緑色で点灯し、LED1、LED2、 	SB ケーブルで接続してボードに電源を供給する LED3 がすべて点滅する
• PC 側で次のように設定して、UART 端子をボードに接続する	
・ UART ターミナル: new line receive = auto、 new line trans	smit = Line Feed
• - シリアルポートの設定:COM ポート番号、ボーレート 9600、	8 ビット・データ、パリティなし、1 ストップ・ビット、フロー制御なし
• STM32WL Nucleo ボードのリセット・ボタン(B4)を押す	
 - STM32WL Nucleo ボードは、いずれかのビーコン周波数を まで何の動作も示さない 	使用してビーコン送信を開始するコマンドを、接続先の PC から受信する
• - 使用する周波数は地域に応じて選択される	
 ・ バージョン確認後、地域を指定するコマンド、サブ地域を指定 に送信する 	定するコマンド、ビーコンの開始コマンドの 3 つのコマンドをボードから PC
 ・ (AT+REGION=x、AT+SUBREGION=x、AT+BEACON_ON 3番目のコマンドでビーコン送信を開始する 	↓最初の 2 つのコマンドは送信するビーコンの形式を選択する
 利用可能な地域のリストは AT+LIST_REGIONS を実行し 	て取得
 ネットワークのタイムスロットごとにコンセントレータが点滅を開始す 	する(緑色の LED)
・ デモ全体を実行するには、最大 14 個の Nucleo Demo センサを	プログラムして、Nucleo Demo Concentrator に接続する必要がある
	11
augmented	

このスライドでは、Nucleo-WL55JC ボードでデモンストレーション・アプリケーション・ソフトウェア を実行する手順について説明しています。

- ボードのジャンパのうち、JP4(電源ソース)が STLK 側、JP1(I_SoC)がオン、JP3(Boot0)が オン、JP7(5V_PWR)がオン、JP8(6 本のすべてのジャンパ)がオンであることを確認します。
- STM32WL Nucleo ボードの USB コネクタ CN1 と PC を標準 USB ケーブルで接続してボードに電源を供給します。LED5 (PWR)とLED6 (COM) が緑色で点灯し、LED1、LED2、LED3 がすべて点滅します。
- PC 側で次のように設定して、UART 端子をボードに接続します。

- UART ターミナル : new line receive = auto、new line transmit = Line Feed

- シリアルポートの設定:COM ポート番号、ボーレート 9600、8 ビット・データ、パ
- リティなし、1 ストップ・ビット、フロー制御なし
- STM32WL Nucleo ボードのリセット・ボタン(B4)を押します。

- STM32WL Nucleo ボードは、いずれかのビーコン周波数を使用してビーコン 送信を開始するコマンドを、接続先の PC から受信するまで何の動作も示しません。

- 使用する周波数は地域に応じて選択されます。
- バージョン確認後、地域を指定するコマンド、サブ地域を指定するコマンド、ビー コンの開始コマンドの 3 つのコマンドをボードから PC に送信します。

(AT+REGION=x、AT+SUBREGION=x、AT+BEACON_ON)最初の2つのコマンドは送信するビーコンの形式を選択します。3番目のコマンドでビーコン送信を開始します。
 利用可能な地域のリストは AT+LIST REGIONSを実行して取得します。

- ネットワークのタイムスロットごとにコンセントレータが点滅を開始します(緑色の LED)。
- デモ全体を実行するには、最大 14 個の Nucleo Demo センサをプログラムして、Nucleo Demo Concentrator に接続する必要があります。
- このデモアプリケーションソフトウェアは www.st.com/en/evaluation-tools/nucleowl55jc.html で入手できます。

このローカル・ネットワークのデモンストレーションでは、1 つのコンセントレータおよびコンセントレータに接 続してセンサのデータを送信できる最大 14 個のセンサで構成する非 LoRaWAN® ローカル・ネットワーク を使用しています。

<u>コンセントレータの動作:</u>

コンセントレータは、16 秒ごとに 1 つのビーコン・フレームと 1 つの同期フレームを送信して最大 14 個の センサのネットワークを管理し、接続されている各センサからデータを受信します。コンセントレータを STM32CubeMonitor に接続することによって、地理的な領域を設定し、検出したセンサのリストと接続され ているセンサからのデータを表示できます。

コンセントレータは、いずれかのビーコン周波数を使用してビーコン送信を開始するコマンドを、接続先の PC から受信するまで何の動作も示しません。使用する周波数は地域に応じて選択されます。

バージョン確認後、コンセントレータ(MB1389D)を起動するために PC に送信する最初の 3 つのコマンド で地域とサブ地域を設定し、ビーコンを開始します。欧州連合地域の場合、このコマンドは

AT+REGION=0、AT+SUBREGION=0、AT+BEACON_ON です。最初の2つのコマンドは送信するビー コンの形式を選択します。3番目のコマンドでビーコン送信を開始します。利用可能な地域のリストについ ては、付録『Regulations applicable to the Demo』を参照するか、AT+LIST_REGIONSを実行します。 ネットワークのタイムスロットごとにコンセントレータが点滅を開始します(緑色のLED)。コンセントレータが ビーコンまたは同期のパケットを送信しているときは赤色のLEDが点灯します。コンセントレータが何かを 受信すると、受信パケットの終了時に青色のLEDが点滅します。

PC 側のソフトウェアはユーザインタフェースにすぎません。無線の管理はすべてコンセントレータで実行されます。

<u>センサの動作:</u>

センサのパケットは、同期と次のビーコンの間で送信されます。センサは、ビーコンを受信して現在の周期 と正常に同期した場合にのみデータを送信できます。デフォルトの符号化は、コンセントレータのビーコンが 使用する符号化と同じです。

センサはスキャン状態で起動します。この状態では、センサの赤色 LED が高速で点滅します。センサが ビーコンを 1 回検出した後は、リセットされるまでスキャン状態に戻ることはありません。

同期状態では、センサはビーコンを追跡しますが、接続はしません。ランダムに空のスロットで送信できま す。この状態では、どのようなアクティビティ(受信または送信)があっても青色の LED が点滅します。 ビーコンを検出できかったセンサは、ビーコンを追跡できなくなります。長時間のスリープ期間と長時間の受 信を定期的に切り替えて、バッテリの消耗を抑えながらビーコンの検出を試みます。このモードでは、アク ティビティが赤色の LED で通知されます。

接続状態では、センサは常時接続され、定期的な1回のスロットで測定データを送信します。この状態では、 どのようなアクティビティがあっても緑色の LED が点滅します。

STM32WL55 Nucleo ボードの詳細については www.st.com をご覧ください。当社の YouTube チャネルで動画を視聴する こともできます。

Thank you

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

ご清聴ありがとうございました。